NÖQTƏ
Nöqtə- həndəsənin əsas elementidir. Burada sohbət heç bir ölçüsü olmayan obyektdən gedir. Həndəsəyə aksioma baxımından yaxınlaşdıqda (Sintetik həndəsə) nöqtə ilə bəarbər düz xətt də eyni səviyyədə çıxış edir. Analitik və difersial həndəsədə isə bütün başqa obyektlər nöqtələr çoxluğu kimi təsvir olunurlar.
Yunan filosofu Evklid b.e.ə. 300-ci ildə nöqtəni bölünməyən bir hissə kimi təsvir etmişdir. Teoremlər və onların sübutu üçün isə bu hissənin heç bir əhəmiyyəti yoxdur. Müasir aksiom sistemləri isə bunu inkar edirlər. Məsələn, Hilbert aksiom sisteminə görə həmişə iki nöqtə bir xətti əmələ gətirir. Proyeksiya müstəvisində nöqtə və düz xətt mövhumları hətta bir-biri ilə dəyişilə bilər. Burada həmçinin xətti sonsuz kiçik və nöqtəni sonsuz uzun və nazik götürmək mümkündür.
DÜZ XƏTT
Düz xətt — həndəsənin əsas elemntlərindən biridir. Həndəsənin sistematik təsviri zamanı düz xətt yalnız birbaşa olmayan şəkildə aksiomalarla təsbit edilir. Düz xəttin aşağıdakı xassələri vardır:
* İki üst-üstə düşməyən nöqtədən yalnız bir düz xətt keçirmək olar.
* Müstəvi üzərində üst-üstə düşməyən iki düz xətt ya bir nöqtədə kəsişir, ya da paraleldir.
Üçölçülü fəzada iki düz xəttin qarşılıqlı vəziyyətini təsvir etmək üçün 3 variant mövcuddur:
1.
o düz xətlər paralleldirlər,
o düz xətlər kəsişirlər,
o düz xətlər çarpazdırlar.
Dekart koordinat sistemində düz xətti birdərcəli tənliklə ifadə etmək olur.
MÜSTƏVİ
Müstəvi - həndəsənin əsas elementlərindəndir. Burada söhbət ikiölçülü sonsuz uzunluğa malik yastı, sonsuz kiçik qalınlığa malik obyektdən gedir. Müstəvinin tənliyi ilk dəfə olaraq A.K.Kleronun (1731)işlərində, müstəvinin kəsiklərdə tənliyi Q.Lamenin (1816-1818) işlərində, normal tənliyi isə L.Qessenin (1861) işlərində rast gəlinir. Müstəvinin n-ölçülü fəzada təsvirini ifadə edən tənliyi E.Kondratev (2006)təklif edib.
Müstəvinin aşağıdakı xassələri vardır:
* Müstəvi üzərindəki istənilən iki nöqtədən keçən düz xətt bu müstəvidə yerləşir.
* İki verilmiş nöqtədən eyni məsafədə yerləşən nöqtələr çoxluğu mövcuddur,
* n-ölçülü fəzada n-1 ölçülü fəzaya aid olan nöqtələr çoxluğu vardır.